W04

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Prac-
tice, Cambridge, UK, 11-15th July 2005

OPTICAL TOMOGRAPHIC RECONSTRUCTION USING THE Py RADIATIVE TRANS-
FER EQUATION

S. WRIGHT, M. SCHWEIGER, and S. ARRIDGE
Department of ,Computer Science, University College London, Gower Street, London, WC1E 6BT UK
e-mail: {S.Wright,M.Schweiger,S.Arridge}@cs.ucl.ac.uk

Abstract - In this paper we consider the inverse problem of reconstructing the absorption and scattering
coefficients of the Radiative Transfer Equation (RTE) from measurements of photon current transmitted
over a large number of scattering lengths. We consider an output least squares formulation of this problem
and derive the appropriate forward operators and their Fréchet derivatives. For efficient implementation
we derive the second order form of the RTE, and discuss its solution using a Finite Element Method
(FEM). The Py approximation is used to expand the radiance in spherical harmonics, which leads to a
large sparse matrix system that can be efficiently solved. Examples are shown for a low-scattering case
where the Diffusion Approximation fails.

1.INTRODUCTION

The concept of using optical radiation to penetrate highly scattering media, combined with image re-
construction methods to recover optical parameters inside the media, has been a recurrent idea for over
a century. However it has received great attention in the last decade due to advances both in measure-
ment technology and in theoretical and practical understanding of the nature of the image reconstruction
problem. This field has come to be known as Diffuse Optical Tomography (DOT); for recent reviews
see [1-3].

The term “Diffuse” is employed since the usual conditions being investigated are where the medium
is so highly scattering that its propagation is nearly completely described by a Diffusion Approximation
(DA). However, it is well known that under certain conditions, the DA is no longer valid. In particular
the presence of non-scattering (void) regions, such as those occuring in the Cerebro-Spinal Fluid (CSF)
filled ventricles in the brain, represent a situation for which the DA is clearly inadequate. Under these
circumstances, more advanced methods are required [4-T7].

A general model of light transport in scattering media, but one that ignores polarisation and coherence
effects, is the Boltzmann Equation. This equation has been extensively studied in the field of Neutron
Transport [8-12] and in Radiation transfer [13,14] where it is known as the Radiative Transfer Equation
(RTE). Although a very large literature exists on numerical methods for this problem, relatively little
has been applied to Optical Tomography. First order methods based on finite differences for the steady
state problem were studied in [6,15], and for the time dependent problem in [5]. In the frequency domain
a first order finite volume method was developed in [16], and a finite element method in [17]. A finite
element method for second order form based on the Py approximations was developed in [18], and its
application to Optical Tomography in the steady state and in the time domain was pioneered in [19-23].
The same method, taken to the P3 approximation was studied in [24]. A second order form, using finite
elements, but using discrete ordinates for the angular variable was studied in [25]. In this paper, we
use the second order Py formulation in the frequency domain, and discuss its application to the inverse
problem.

2. FORMULATION OF THE PROBLEM
We are considering the RTE in a domain € with boundary 92, with outward normal 7. We will discuss
only the single-group RTE which in the steady state is written

(§ -V + per(r) + 12;’) é(r,8;w) = us(r) 2(9(§,§,’)<]$(1‘,§';(.u) ds’ + q(r,8w) (1)
s
Here g (r) = ps(r) + pta(r) (units of inverse length) is the attenuation coefficient at position r, with
ps(r) the scattering coefficient and p,(r) the absorption coefficient. ¢(r,8;w) (units of inverse length
cubed per steradian) is the number of photons per unit volume at position r with velocity in angular
direction §, with ¢(r, §;w) the number of source photons, and w the modulation frequency. ©(8,§’) is the
normalised phase function representing the probability of scattering from direction §’ to direction §.
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In general, the phase function depends on the absolute angle § and leads to anisotropic effects [26],
but in this paper we will make the usual assumption of directional independent scattering ©(8,§8') =
O(8-8') = O(cos 7), whereupon the integral operator can be interpreted as a convolution on S? and is
defined by

S[8](8) := 52@(§ §)¢(3)d8' =100 ¢. (2)

We define the combined attenuation and inscatter operator
~ 1w
C:= Htr(w)—ﬂsszﬂa‘*‘?‘f‘ﬂs (Z-9) (3)
where figr(w) := fier + 1—‘0‘—’ is the complex attenuation coefficient. This allows us to write (1) as

§-Vo(r,§w) +Co(r,8w) = ¢(r,8;w) . (4)

The simplest boundary condition for the RTE is the vacuum boundary condition that specifies that
there is no incoming energy flux crossing the boundary

o(r,8w) =0 redQ, V§-0<0. (5)

We define the inward and outward fluxes :

Jy = /‘;~D>0 (8-0)¢(x,8;w), J-= /S 3 -=-D)p(r,§w), Jn=Jp—J-. (6)

8-0<0

The Forward Operator F; is a non-linear mapping from pairs of functions in the solution space, to
data on the boundary, for given incoming radiation ;.

The Direct Fréchet Derivative ¥’ ;(fia, pis;w) is a linear mapping from pairs of functions in the solution
space, to data on the boundary, for given incoming radiation 7;. F’; is the linearisation of F; around the
solution point {ia, s} that maps changes in solution space functions to changes in data. The value of
the mapping

(07
Y} (m;w) = F'j (ha, s w) (J

is given by

(513 +8-V+ pa(r) + /Ls(r)) ¢} (r, §w) — ;zs(r)/ O -8")p(r,3,w)ds’ =
S2

- (%+§~V+a(r)+7‘(r)) ¢i(x,$;w) +v(x) [ OB -8)p;(r,8" ,w)ds’ re\an (7)
52
¢3(r,8,w) =0 on 0Q x {§-0 < 0} (8)
yg (m;w) = / (8 -ﬁ)ég(nl, §;w), m € 09 . 9)
8-0>0

The Adjoint Fréchet Derwative F;* (Ha, pts; w) is a linear mapping from functions on the boundary to pairs
of functions in the solution space, for given incoming radiation ;.
The value of the mapping

(8% 1
(2) = 5 (i s mic)

i

is given by

w) — ps(r) [ O -&)(x, 8 w)ds’ =0 r€Q\ 0 (10)

(-2 5094 sale) + palr) ) 05005

Yi(r,8,w) = y_g(ln;w) on Q0 x {§ 7> 0} (11)

(:) - /52 (@(ﬁ.;z@(é—-l?’;bjjdg'_(ﬁj)) ds reQ\oQ. (12)
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3. THE INVERSE PROBLEM

We consider the regularised output least-squares approach to the inverse problem. We assume a finite
number of incoming radiation sources {n;;j=1...5}. The forward operator is now considered as a
stacked set of operators

y1(m;w) P (pta, ps;w)
yo(m;w) Fy(pra, pis;w)

y(m;w) = : = F(pa, pis;w) = . (13)
ys(m;w) Fs(pta, pis; w)

We also consider a finite sampling of the outgoing distributions y; (m;w), leading to a measurement model

;i (W) = M; [y; (m;w)] /an w; (m)y; (m; w) (14)

where w;(m) represents the finite aperture of a detector. In the following we assume a finite number M
of detectors, defined as a set of functions

W={wm)g;k=1...M},

with W; C W the subset of size M; of detectors that see source j. We seek the solution

{fin, fis} = argmin > |y;i(w) — Fji(a, is; w)|* + AT (pta, pis) (15)

{pasns} 55

where J (fta, pis) 1s a regularising functional and A > 0 is a regularisation parameter.
The Newton scheme for solving (15) reads

k (k)
(F‘a)( o <”) Y, (F"F +,\j")_1 [F* v -F) -27]. (16)
Hs Hs

A conventional way to implement this scheme is to build the explicit discrete representation of F'
referred to as the Jacobian J. In this paper we use an adjoint method to construct the Jacobian (see
section 5.4) and use a generalised minimum residual (GMRES) iterative linear solver to implement (16).
The GMRES solver can be implemented in terms of matrix-vector and matrix-transpose-vector operations
without explicitly constructing the Hessian term. We use an inexact line-search to determine 7 at each
iteration. The regularisation term J was implemented as a second order Tikhonov scheme of the form

Tum) = (@ (1) (12)) (1)

Hs Hs

with derivatives

T (pha, pis) = L (Za> , J"=L (18)

where L is the discretised form of the Laplacian operator. The regularisation parameter A can be evalu-
ated for example by an L-curve method.

4. EVEN PARITY TRANSPORT EQUATION AND THE WEAK FORMULATION

For the use of numerical methods based on variational principles, it is convenient to work with a second-
order, self-adjoint operator. To derive the even-parity RTE, we define even parity radiance and source
terms

1

5(8) = 5 (3O £4(-8) , ¥ @) = 5 (4(8) £ a(-9)) .

N | =

We may also split the kernel of the convolution operator as

ot (cosT) = = (O(cos7) £ O(—cos 7)) .

[N
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Then (2) becomes

S[o] = SFle*] +S7[¢7] (19)
where we have defined
St[ot](8) := Sz@*(g 8T (3")ds' = 0t @ ¢*. (20)
Finally we can define
CF = i) = paS% = i+ (T 5%) (21)

The derivation of the even parity transport equation proceeds by defining the odd parity radiance in
terms of the even parity radiance as

¢~(8)=D[g7(3)—8-V¢*(3)] (22)
where the generalised diffusion operator is defined D := (C7) ~'. After elimination of terms we arrive at
(€t —5-V(Ds V) ot (r,8w) = ¢t (r,8w) -8 -V (Dg™ (r,8;w)) . (23)

4.1 The Weak Formulation
In the weak formulation of the even parity RTE, the (even-parity) radiance is represented in a finite-
dimensional space "+t

K
o, 8) =" 8) = ) ol filr9) (24)
k=1
where {fi;k=1,..., K} are a set of basis functions for x"*. Let us assume that the basis is developed
separately for the spatial and angular terms
fe(r,8) = uq(r)0:(8) d=1,...D;t=1,.. T;K=DxT. (25)

Since we require even parity for ¢** it is natural to choose f; to have even parity. The space x*t is
equipped with a norm

W, 8) = / / $(r,8)(r,8) drds (26)
52J0
Since ¢"* is an approximation to ¢7 it does not satisfy (23) exactly, but rather
(¢t —5-V(Ds-V)) "t (r,8w) — " (r,8;w) + 7" (r,8;w) = e(r,§;w) (27)
where ¢"* and n”* are the projection onto x"* of ¢* and § - V (Dg~ (v, 8;w)), respectively.

The principle of the weak (Galerkin) approximation is that the error term e(r, §;w) be orthogonal to
the space x"*, i.e. that

(fs,e)=0 Vk=1,... K (28)
which leads to a discrete matrix equation for the K unknowns (;5,':
Mot = qF. (29)

Consider the weak version of the boundary conditions (5) :

/(§-1?)Ht(§)¢(r,§;w)d§:0 t=1,...T. (30)
8-0<0

)

Let us assume that ¢ = 0]an then we have

¢=9¢% +¢7 =¢" -Ds.Vo",
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so that (30) becomes

| 8- 916:(8)6* (v, 8 ) d

s

/(g 5)6,(8)D3 - Vgt (v, §w)ds =
§-0<0

%
AN

§-0)6:(8)¢F (r,8;w)d8 =
<0

(3-9)0:(3)Ds - Vgt (r,8w)ds t=1..T. (31)

J.
J

N = N

> 2
From the Galerkin formulation, we can write (28) as
(ugby, (CT —5-VDs-V) ¢"t) = (uaby,q™) . (32)

Applying the Divergence Theorem ([, 8- Vg = [, 8 Pg ) and making use of (31) we get

<ud6t,C+q§h+> + (8- Vuqby, D§ - qu)h+> + / |§ -17|9¢(§)/ ug(r)¢T (v, §;w)drds = (ugby, q"') . (33)
52 sy

4.2 Measurement Operator
For the even-parity form of the Boltzmann Equation we have

é(r,8w) ~ ¢t (r,8w) —D(r)§- Vo' (r,5;w) (34)
whence
Jp=Jo(ryw) = ——D(r)/ (g.a)g.v¢+(l~,§;w)d§:_2/(§.a)¢+(r,§;w)d§
S2 s$-0<0
= — [ |38-P|¢T(r,8w)ds. (35)
52

5. IMPLEMENTATION

5.1 Py Approximation

In principle we may use any basis functions 6, (8) for the angular variable. However if we use spherical
harmonics we obtain the so-called Py approximations. We express the quantities in (1) as

o) i

6,80 =3 3 (55) dumlrialin® 36)

I m=-l

oo l %
q(r, $;w) = Z E (214_:_ 1) Qm (v;w0) Y7 (8) (37)

where Y} 1 (8) is a spherical harmonic of order [ degree m, and the normalisation factor ((2/ 4+ 1)/4n)t/?

1s introduced for convenience. If the phase function is assumed to be independent of the explicit angle §
and is written ©(8 - §') then

0 i
0E-8) = YD OV m(E)Yim(s)
I m=-—

and (1) can be expressed as an infinite set of coupled first order equations. When these are truncated by
assuming ¢; m = 0;{ > N for some N the result is a set of (N + 1)? (in 3D) first order equations known
as the Py approximation [2,8,10].

The Py operator has a special form

Co Ao 0 0
AT 3¢, 34, 0 .
Px=10 3AT 5C, 542 ...|- (38)

The operator () is diagonal for angularly independent scattering and 1s given by

G = (,Ua + (1 —0r)ps + %) 7
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where 7 is the (20 + 1) x (2{ + 1) identity operator. The operator .4; is a generalisation of the divergence
operator and has the following form

Ozz,—z'Dg' B2 w-Df 0
0 61’1,1—1D2' Bii-1z; ma-1Dg
A= . . . . (39)
0 al,lpg_ ,61_‘1 F)Qz_ Afl,l’Dg
where
{(I-m+2)(I-m+1) _ A/+1-m)(I+1+m) . . (I+m+1){{+m+2)
QAlm = 20+1 ) ﬁl,m = 2041 o lm = 2041 )
Pt _ =1 - _-1({a8 _:»
D§_2(8:c+6y)7 DE_T(%_E?TJ)]”
Applying the representation (38) to the even-parity form of the RTE leads to the system
+
7300 P02 0 0 ¢00 +40,0
P 0 P2 2 7)2 4 (1 e ¢§rme[ 2,2] qime{—z,z] 40
0 ’P4 2 P Pie - ¢4,me[_4,4] T [ %4,me[-4,4] (40)
Where
TACTT AT Py = —AcCr " A
2 0= ATCI TAT P, =50, —3ATCT Ay — 2—75./42(,'3_1.,4;F

5.2 Even to Odd Calculation

In the Even Parity formulation presented in this paper only the even components of the spherical harmonic
expansion of the radiance ¢(r, §;w) are calculated. However, in order to evaluate the Fréchet Derivatives,
(12) the odd components of the spherical harmonic expansion of ¢(r,8;w) are needed. In order to evalu-
ate the odd components, expression (22) is used to compute the odd components directly from the even
components. The transport term (8- V) is evaluated using the usual spherical harmonic angular basis and
is given by (39). Hence there is a requirement to evaluate x,y and z derivatives of the Even Parity compo-
nents. This is accomplished by implementing a central difference scheme or a relevant forward/backward
scheme at the boundaries.

5.3 Finite Element Method (FEM)
The FEM implementation of (40) is obtained by specifying that the domain € is divided into P elements,
joined at D vertex nodes and the basis functions {ug4(r);d = 1...D} are chosen to have limited support.
The problem of solving for ¢+ becomes one of sparse matrix inversion for which standard methods are
readily available. Because of the separability of the spatial and angular basis functions, the matrix M
in (29) has the structure of a D x D graph representing the connectivity of the FEM mesh. For the general
Py equations each node that is not on the boundary needs to be expanded into a T' x T block whose
structure has the block tridiagonal form shown in (40); this block is also sparse, with the proportion of
non-zeroes decreasing with increasing Py order.

Whereas the integration of products of spherical harmonic functions on the sphere is given analyt-
ically, the implementation of the boundary conditions calls for the integration on a half-sphere of the
surface integral in (33). For this a Lebedev-Skorokhodo quadrature [27] is employed.

5.4 Calculation of the Jacobian
Pa(r)
ps(r)

Each row of the Jacobian is a pair of functions (
adjoint source vectors ¢} for each measurement position as follows

) in space, which is obtained by constructing
i.j

(—-iE —§-V+ ,ua(l‘) + ;us(l‘)> ¢ (1' ) /Js( ) @(§ '§/)¢:(r)§lrw) d8’=0 re Q\ﬁQ (41)

52

;i (r,8,w) '—‘1”_1'(111) on 90 x {§-7 > 0} (42)
(/ﬁg;DJ - / < (f5:© “—¢“’¢¢d ¢)> ds r €0\ 00, (43)
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Using the spherical harmonic representation (36) we can represent (43) as

pa(r) _ —2im mﬁw)qﬁl,m(r;w) .
(ps (r))m B (zl,m(f— ©1J87 (131 (r;w)) SRALEEE

Note that the odd components of the radiance are needed here.

In order to deal with the large dynamic range of the data we make use of the logarithm of the data
which leads to rescaling of the Jacobian by the data. And in order to deal with the mapping from
real coefficients to complex data we split the Jacobian into real and imaginary parts. This leads to the
following linear system

(refisrly _ (* diag {3} (4. (45)

I'm [logy’] T |diag {1 }J] | \7

6. RESULTS

The above theory has been applied to a simple test problem to produce some initial results. A cube
of side length 10mm and background optical parameters y, = 0.025mm~! and p, = 0.75mm™! was
considered. Two spherical objects of radius 3mm were inserted at diagonally opposite locations. Object
1, centred at (-2,-2,-2) had increased absorption coefficient : p, = 0.075mm~! and p, = 0.75mm™!, and
object 2 centred at (2,2,2) had decreased scattering coefficient : p, = 0.025mm™1 and u, = 0.25mm 1.
Figure 1 shows an illustration of the domain described. Four sources were placed on the edges of a square
with four detectors on the vertices of the square on each of the four vertical sides of the domain, making
a total of 16 sources and 16 detectors in total. The refractive index of the medium was taken to be 1.0

5

object 2

10mm

X

X O
D X O

detector ~—~—_ O X |O

Source ——— ><

-5

Ay XA 5
X O 10mm

(@)

- S object 1
5 I0mm 5 -5

Figure 1: The solution domain.

with the sources taken to have a frequency of 100MHz. The angular distribution of the source structure
was taken to be isotropic for all forward models in both data generation and reconstruction. Data was
simulated at the 16 detectors for each source using the P; model, leading to 256 measurements for both
log amplitude and phase, and is shown in Figure 2. 1% Gaussian multiplicative noise was added to the
data, and reconstruction was performed for both p,, and p; simultaneously, starting from the background
state of i, = 0.025mm™" and pu, = 0.75mm=". Two reconstructions were calculated, firstly using the Py
reconstruction model and secondly using the Pj reconstruction model. Figure 3 and Figure 4 show the
reconstructions for the absorption and scattering parameters respectively, for the two different models.
In both cases the result is for the fourth iteration of the Newton scheme. The results presented consist of
a cross-section of the domain through the plane z = —2 for yu, and z = 2 for p;. Both reconstructions
seem to produce reasonable results and are qualitatively similar in structure. A smoothing effect is
clearly seen on the reconstructed object, i.e. the sharp edges of the inserted low scatter region are not
determined. This is due to the ill-posedness of the system and the use of a Tikhonov regularisation
scheme which suppresses the high frequencies in the solution. Artefacts were noticeably more prevelant
in the P; reconstruction because of the lower accuracy of the model fit.
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Figure 2: The log amplitude and phase data calculated using the P5 forward model.
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Figure 3: The absorption parameter, y,, calculated using the
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Figure 4: The scatter parameter, u,, calculated using the P; and Ps reconstruction models.

To examine the differences more accurately Figure 5 shows the one dimensional cross-sections for pi,
and ps through the centres of the two objects. Figure 5 shows that both models underestimate the p4 ob-
ject but produce a good estimate to the low scattering region u; = 0.25mm™! with the P reconstruction
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Figure b: The cross-section of the absorption and scatter parameters, p, and p,, calculated using the Py
and Ps reconstruction models.

model producing a marginally lower value. Further investigations are needed to test whether the higher
order reconstruction schemes can produce superior results for domains which have low scatter regions.
Future work will test this method with simulated data obtained from another source, such as a Monte
Carlo methods, and with measured data.

7. CONCLUSIONS

In this paper we presented the derivation of the forward and inverse models for the reconstruction of
absorbing and scattering coefficients of the RTE. The implementation was in terms of a FEM for the
second order even-parity RTE, using the Py approximations. This leads to a large sparse matrix system
with a simple structure. We have reported initial results that show the improvement of the RTE method
over the simple DA.
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